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ONFIGURATIONAL ASYMME

f nonharmonic steady-state solutions. These solutions are described
by sums of three constant amplitude rotating angles. One angle
otates at the spin rate and the other two rotate in opposite direc-
tions at approximately one-third the spin rate. This generalized
subharmonic motion can be very much larger than the usual harmonic
trim motion and can occur for spin rates greater than eight times the
resonant spin rate, The predictions of the quasilinear theory are
compared with the results of exact numerical integration of the

equations of motion with much better than 5% agreement in all cases.
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cubic static moment coefficients

coefficients of the transverse components of the
aerodynamic mo

aerodynamic moment coefficient due to asymmetry
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axial, transverse moments of inertia

amplitude of the harmonic trim motion

maximum value of k3
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The theory of the linear motion of a '"slightly asymmetric'' missile
was first developed by Nicolaides.l* The assumed aerodynamic force and
moment have the same form for an asymmetric missile as for a symmetric
missile with the exception of the presence in the asymmetric case of
constant amplitude force and moment terms whose orientations are fixed
relative to the missile. These terms induce a trim angle of attack
that rolls with the missile (tricyclic motion). For a constant roll
rate, the amplitude of this trim angle of attack is a function of the

h

- <2 ) 2N n+ao [} 0o

= 1 -y e ared P o ] ~ vl oA ~
ith a maximum angle occurring when the roll rate equals the

a1 o
011 T

=

ate
natural pitch frequency (resonance). Recently, asymptotic re ations

t
have been derived for trim motion when spin varies through a constant

ity with a constant spin rate.

. . 4 . . . S

In 1959 Nicolaides extended his analysis of asymmetric missiles
to include nonlinear roll-orientation-dependent terms and thereby
introduced the concepts of "spin lock-in'" and ''catastrophic yaw."

Since then, spin lock-in has been studied by a number of authors.

7
by Kanno. The quasilinear analysis technique, which has been mos

successful in describing the angular motion of symmetric missiles,

-
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ghtly
asymmetric missile. The detailed nonlinear behavior near resonance
have shown

(o}
that the results of References 10-11 can be obtained by the more so-

bic static moment 1is
quite similar in form to Duffing's equation. The harmonic

response curve has the same form as for the one-dimensional Duffing's

AAAAA 3 A Th & response curve
1

*References are Listed on page 39.
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an in-phase solution and two out-of-phase solutions existing near
resonance, and it can be shown that the intermediate size solution
. 7 i

is unstable. Since the harmonic res

motion is a constant amplitude coning motion, the mathematical

analysis is much simpler than for Duffing's equation and does not

require any approximations.

As a result of this similarity with Duffing's equation, the
question of the existence of subharmonic solutions naturally arises.
In th
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quasilinear transient frequency to be one-third the forcing function
frequency. It is then shown that for sufficiently small damping, sub-

harmonic solutions exist for spin rates three times the resonance spin

rate,

The situation is somewhat more complicated for the two-dimensional

here are two transient frequencies present and, therefore, the
condition for subharmonic response is not clear. In this paper we will

obtain a condition for subharmonic response and derive the equations

S
for the amplitudes of the three modes

Fh

oretical predictions will then be compared with the results of numerical

integration of the fourth order equations of angular motion.

for the analysis of the flight of missiles and aircraft, a related non-
spinning coordinate system which pitches and yaws with the missile is
most useful for treating the motion of symmetric missiles. For this

coordinate system with axes X,Y,Z, the X-axis lies along the axis of

symmetry of the missile and the ?_ and Z-axes are so constrained that

the Y-axis is initially in the horizontal plane and the angular veloc-

ity of the coordinate system has a zero X-component. The angular
motion of the symmetric missile can be described by a complex angle of
attack, &, and a complex angular velocity, u, where

E=(v+iw/V (1)

14



b= (@t inv (2)
¢ is a complex number whose magnitude is the sine of the angle between
P T [ I a s (U U S ~Ale avie ~€f cirmmaotry (b +A~Asnl1 ansla
ine velocClity veciorl dna e missile's axis of s MHeELry (Liie tltal aligic
of attack) and whose orientation locates the plane of this angle.

By definition, a slightly asymmetric missile has a transverse
moment expansion of the same form as for a symmetric missile with an
Thi

wn

added constant amplitude term that rotates with the missile type

o]
o

of term can be introduced by a smail control surface deflection or
small manufacturing inaccuracy. I 11
consideration to a cubic static moment and neglect any Magnus moment

P T -
contriovucion, u

missile assumes the form

_ ~ ~ i¢ , DN
~ +1C~=-1C¢C e’ - 1(c. + 84
Cm n Mg (<, c, )&

(3)

ic, £ +C, m

M, ° Mo

o q

where

S ~2 mox
8 = |g| =¢&¢&
At _ w0 /1
0] = px/v

11
11

For this moment the differential equation® of motion is

The effects of lift and drag have been neglected for simplicity.
These effects plus that of a linear Mhanus moment can be easily

o

added. Small geometrtc angles (8 < 0.2) are also assumed so that
certain geometric nonlinearities can be omitted.

15
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where H, P, MO, M2 and Ma are defined in the list of symbols. For

constant spin, the asymmetric moment forcing function induces an aero-
dynamic trim angle that rotates with the missile. If both the spin

and the cubic static moment terms vanish (P = M_ = 0), this trim angle

2

becomes the linear trim angle for zero spin and is given by the rela-

IAn
1uUil

S =M /M (5)
Io a' o

€ can now be scaled with respect to this zero-spin trim angle by the

substitution
g = &/GTO (6)

A further simplification is possible by use of a new independent

variable 1, where

men oo AL crmms ~la ~ wmadiia A PR 2 A A ~
These changes of variable reduce Equation (4) to a

~ A A:. ~ 2~ lql)
L+ (H-iP)r v e fof)c=e (8)

where



s equal to the linear zero-spin trim

the nonlinearity as well as of the

Duffing's equation for one-dimensional motion could be written
in the form
x + hx + (1 + ax?)x = cos ¢ 1 (9)

For constant roll rate, small ratio of the moments of inertia

A

(P = 0) and planar motion, the left side of Equation (8) takes on the

L ol ML o o o PRV Lot 4lin Loannl R A
rornm 01 DUITI1INg > eudilojl but Lnc 1o01rcil uncelon wiiil
i

Duffing's forcing function. Indeed, for this circular forcing function,
1

e. If we take the real part of Equation (8),
E o

component. Thus Equation (4) is similar to Duffing's equation but is

nat a ceneralized form of i+
1L a SCIIDLGLLLUU AVl v 4 Lo
The harmonic response solution of Equation (8) for constant roll
rate can be easily obtained by assuming a solution of the form
. i¢,
~ 3
c=ke -, . =9 + ¢ (10)
3 3 ' 30

where k3 and ¢30 are constants.

Direct substitution of Equation (10) in Equation (8) yields:
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This cubic equation in k3 is

[*" L

n

egative m, . These curves and the instability7 of the intermediate

size solution are very similar to corresponding features of Duffing's

equation. The maximum value of the harmonic response, k , and the
3m

spin rate at which it occurs, ¢y, can be easily estimated from

Equation (11) by letting 930 be - 7/2 and assuming the woment of in-
ertia ratio to be small.
A % 1~
LlEs} - 2= 3 = TR} R
¢4 = (1/2) {1 + [1 + 4m _H~7] b= ma</H (12)
m
kK =g 1t et/ H-2 (13)
3m m a

The approximate forms of Equations (12-13) are, of course, valid only

when maH'2 is large.

The form of the solution to the linear version of Equation (8) 1is

the usual tricyclic equation

= e =4

i i 19
~ ¢1 . ¢2 3 71 AN
r = k.e +ke” +ke (i4)
2 3
where
. A
k. = X, k., j=1,2
1 1 1
o o e
The first twe terms in Equation (14) are modes of free oscillations
~
induced by initial conditions and for constant XA, their amplitudes

[
Qo



These free oscillation modes are so numbered that |$1Ig|$2| .
For a statically stable missile, the larger frequency, which is com-
monly called the nutational frequency by ballisticians, has the same
sign as the spin while the smaller frequency (the ballistician's pre-
cessional frequency) has a sign opposite to that of the spin. If the
actual solution to the nonlinear Equation (8) can be approximated by a

solution with the form of Equation (14), the nonlinear coefficient of

-~

C can be approximated by

~ 2
= k2 2 2
lz]| = kl + k2 + k3 + 2k1k2 cos¢, (15)

+ 2 kyky cose + 2 k k, cos (45 - )
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¢_ is the phase angle for the magnitude of the angular motion for

s
a symmetric missile and is constant for a gyroscopic stability factor
of unity. ¢_ is the phase angle between the fast (nutational) mode

and the trim mode and is constant for resonance ($1 = ¢). The
parameters (;1, éi’ k; ¢30) of Equation (14) can be obtained as
functions of kj by an averaging process. If the spin rate is not near
Z€To0 or él these relations take the form:10

Ao
A

. _ . a1
xl = _ [H¢1 * o, - 2mak2k3 (sin \P)av][2¢1 - P] (16)

~ Ao

. 2 -1 . : 511
A, = - [Ho, + ¢, +my ki k3 k" (sin ¥)_ J[2¢, - P] (17)
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III. STEADY-STATE NONHARMONIC MOTION

For a dynamically stable missile the transient motion induced by

represented by k3 remains. In the case of Duffing's equation, another

L]
solution is a subharmonic one with a frequency of ¢/3. As we shalil
see, Equation (4) can have a somewhat more complicated steady-state

solution which is a generalized subharmonic response.

For a steady-state motion, ¢j is zero and Equation (14) will

~
1

yield a nonharmonic steady motion for three combinations of k., and Ai.:

] ]
(1) k =0, 2, =20
1 2
(2) k, =0, x, =0
2 1
or (3) A = AZ = 0. A quick inspection of Equations
1
(16-17) shows that the third case is the only possibility and then
~Tar 2L +lin asras -~ et Ia s e A A~nAandi+asnn LAt ~namas ~12 = 1
1y 11 LT 4veldge UL 51T 15 IVILLCL O, A vvliul Lluil 1ul Yelicldilzed
subharmonic response is, therefore,
W - 24 _ 4 -—4=0 (21)
T - 40y LY A\ d v =+

Equations (16-17) for zero damping now provide a condition for VY

and a relation between the modal amplitudes

sin ¥ = H ¢, (2m Ky ky)™! (22)
Z _ 2
ki =2bkJ (23)
where b = -¢,/9,



Equations (18-23) now provide a set of seven equations in seven
n¢ ;W)'

LY. an
< 3U

unknowns, (k., k_, k_, $1: ¢
’ 12 722 T3 71

lifie

[o%
[N

e ratio of

i

=

th

moments of inertia is neglected and Equation (23) used to eliminate
k1 . The results of this simplification are given in Table I. Under

A
cam A Tt A T A 3 e _ IMin 3 A
10 aerodynamic damping (H = 0), Equation

PN K

the further simplification of
(22) reduces to ¥ = 0, m and the fourth equation of Table I requires

¢30 = 0, m . For the four possible choices of ¢30 and ¥ , solutions

of Equation (21) and the remaining three equations of Table I were
sought. The results are plotted in Figures 2-3, These figures give

k2 and k as functions of ¢ for various values of m. . Two solution

sets of k9 and k3 are shown, In Figure 2, the two sets of values of

ng one as positive up and the second as
positive down, In Figure 3, k goes through zero for one set of

) j 3

solutions. At this point, say at ¢ = A, ¢30 jumps from m to 0 and

this is shown by plotting k3 as positive down after the shift in phase.

The solutions identified by the dashed line have the values ¥ = 0,

¢30 = 7 for all values of ¢ while the solutions identified by a solid
line have the values ¥ = m , ¢ = 7 for ¢ less than A and the values
T30
v =0, ¢ =0 for ¢ greater than A,
30
As a result of numerical integrations described later in this
report, it is conjectured that the dashed solution is unstable and

only the solution identified by the solid curves can be realized by an

actual missile in flight,

As can be seen from Figure 2, generalized subharmonics exist when

¢ < 3 for negative m_ and when $ > 3 for positive m_ . The precise
] 3 a

value for the appearance of a subharmonic can be computed by setting

k2 equal to zero in the frequencies as given by Table I and inserting

the result in Equation (21):
22



(24)

=
k2]
’]

a

31 +2m

6 =

Since the amplitude of a pure harmonic, k%, at ¢ = 3 is quite close

g
and slightly to the right of this point for

s
a

]

3 for negative m

/
/

positive m_.

d

Table 1.

Frequencies and Harmonic Response

b k2
2

3

1
k. k, cos ¥]31%
4

2+2k%+2
3

[2 (b + 1) k2

al

{1 +m

1t



A simple approximate relation for k_ can be obtained by neglecting
2

kq in the frequency equations of Table I and approximating b by 1.

o

Figure 3 shows that k3 is less than .15

the relations for the frequencies show the b approximation to be good.

— -~ el e D A L~ Laimmssimeomomsr Armiin 2~
ne 11cqucliivy tyuativiis

atio
from Table I in Equation (21), a quadratic equation in kf results,

<

One of the roots vanishes near ¢ = 3. If we approximate the radical

in the relation for this root, a very simple expression results

2. (42 - 93067 - 1
m_ k< = (25)
<« Z -2

Equation (25) matches the exact curves %; Figure 2 over the range

2 < ¢ < 10 with an accuracy of * .02 mo.

In the vicinity of ¢ = 3, Equation (25) can be simplified to

m kf =2 (¢ - 3)/13 (26)

The corresponding approximations for the frequencies are

Ry
L}

1+4 (4 - 3)/13 (27)

- [1+5 (6 - 3)/13] (28)

-
1]
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If Equations (27-28) predicted the true subharmonic frequency present

for Duffing's equation, i.e. &/3 , they would have the form

15 1 _ . - P
lq»’Jl =1+ (@ = 9)/d 1<9)
The cimilaritv hatuwean Fanatinne (P7_-727R)Y and Famnatinan (70) l1aade nre
AdLw o~ AIlA AL -l.\-] U LY Wil I.4\1u“ “AWAILD \‘- f “UJ CGliva h%u“\-.‘.vll \‘-JJ dvauo uos

g must be present to eliminate the transient moti

a AT Li&ilsS ia i a

on.
Equation (22) indicates an upper bound on H Since the sine cannot
exceed one. As H is increased from zero, the two pairs of solutions

for kz’ k3 approach each other and coalesce for the maximum value of

H L]

In Figure 4, the maximum value of H is plotted versus ¢ for
m, = +.2. Since H = .01 induces an amplitude decrement of 3% per
Avrnla AF +ha 1inanaw Franmianarv +hn mactwriattinmn Arn Aamraimer 20 canem 4+
“yvav wvai LIl l1iilval l1ilvoyuvolivy, LT 1Totl 1LLivll Uil ualiplily 15 Scull Lu

Vi. COMPUTED MOT ION
The theory of this report gives us sufficient information to
verify the existence of generalized subharmonic motion. F the

or
values of ﬁ, m and @ given in Table II, values of Y, kl, k2, k

1 30
II. All of the parameters of the tricyclic motion described by
Equation (14) are available except for ¢ _ and ¢ although the

25
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Table II. Parameters for Sample Subharmonic Motion
m = 1,0 ) 3.5 H = ,0230
a
y 2.6180 (150°) L5631 (32.26°%)
k. .4281 .3745
k .2976 L2613
2
k, .0890 .0952
1 1 18574 1 15A%
{P A oA wUTT 4 PURV AV
1
) - 1.1931 1.1875
2
1 1NNN g 72°Y 1NnNN (T 77°1
(p [P A VAVAV) LJ./J J PIAVAVA V) Ld./.) }
10
) .6892 (39.49°) 2.7513 (157.64°)
20
) Z 1760 (181 Q7°) 7 1688 (181 5&°)
¢ Je 4 VUU \-LUA.-JI J Ve AUV AV L e
30
; 5667 .0358
H .
0
z .2289 L1342
CVO
., .1872 . 0839
llO
t, - .0941 3846
0



& - .
Y10 20
allows us to compute a set of initial values of ¢z and ¢ for the

generalized subharmonic motion,

Equation (8) was numerically integrated using both sets of
t

ate motion was found for the set of

r U o
i I

[

mal
uia i

2]
(¢]
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most of those associated with the larger ¥ have been. It is, there-
e

fore, our conjecture that the motions associated with the smaller ¥'s

transform Equation (14) to missile-fixed coordinates by multiplying by
1sform Equati (14) ¢ i e-fixed ¢ Y plying by
exp (- i ¢) and make use of Equation (23) and the definition of ¥:
i¢ i(2¢_ - Y) 1¢
s v [rn L\% ~ Tr r 1 11 1 A 30
c = {K_L{< U) c + € ] * R J ©
2 3
(30)

The two terms involving ¢r represent an epicyclic motion with a

nutational frequency that is twice the precessional frequency and a

S
Aa +h 3 o
ude tnat is 0%
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The result of the exact numerical integration of LEquation (8) as
given by Figure 6 has been fitted by the usual tricyclic data

1,15

analysis used for ballistic range tests and the various tricycle

parameters compared with the quasilinear prediction of Table II. The

Thao nwAras

h
1nis TGCeS

ment is quite S inia

agreemen

o g
=8
C
wn
&
H
P

€ t 00
¢ up to 10 with equally good results, which are given in Figure 5.
Thus the predicted generalized subharmonic response does occur for
quite large values of ¢ . Since it is not possible in the numerical
work to use the maximum values of ﬂ, lesser values were used as indi-

cated. In Figure 8 the results for k2 and kq are compared with their

C»>

predictions for the appropriate values of H and it can be seen that in
most cases the agreement is better than 5% .
VII. DISCUSSION

In Figure 5 the harmonic response (k = 0) is shown as a function
2

of spin rate. At a spin rate of 9 the harmonic response is .012Z and
the harmonic component of the subharmonic motion is .14. The two
generalized subharmonic amplitudes, however, are much larger

c4+and c+n+n
SLtCady—->tLaltc

au

—

1- = A 2 Z NN oy
K, = 4,2, K_ = 5.U) a

—

can occur. his steady-state

state motion, If it occurs, it would have an important unexpected

effect of the flight of the missile,.

It should be noted that there are rather severe limitations on
the occurrence of special steady-state motion at high spin rates

($ > 3)., They are:

1. small aerodynamic damping, fi (less than 6% decrement per

pitch cycle);

2. nonlinear static moment which becomes more stable at larger
angles (¢ < 0):
angles (c, 0);

3. initial conditions near the generalized subharmonic motion.

28



Thus generalized subharmonic motion should trouble the missile desi

WM. - 13

+ Adraac An~as
¢ ades Ooccdur,

[=H

s

ct
3

ver requently. Wnen can
puzzling effect since it occurs for spin rates
consider to be very safe,
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21), we have
5!

d

i
=2[1+4m k2] + 1 + 5m k2]
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APPENDIX A
¢ ,
d

Substituting Equations (A-1--A-2) in Equation (

become

~
—
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~~

N
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(A-5)
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According to Equation (A-3), ¢ is 3 when k vanishes. Thus the root
2

with

ion (A-5) is extraneous. We therefore
take the root with the plus sign and approximate the radical with the
first two terms of the binomial expansion.

~~
S .
(S
]
—
~—

N[N

. (A-6)

© O

- 11)

Near ¢ = 3, we can approximate § with 3 in every factor of
Equation (A-6) except ($ - 3).

2 . y -
m, ki = 2(¢ - 3)/13 (A-7)



APPENDIX B

EFFECT OF LIFT, DRAG AND MAGNUS MOMENT

A linear Magnus moment can be easily introduced into Equation (3
i¢ . 25 >
Cn 2 3 O = ERYel = 1l + ~ 84F
vu. T 14U = = 1 U 5 = 1\ < c. 7,5
m n M 0 2
0
] 1
-ic, g +¢C, v (R-1)
R M LCTey
a q
1nQ/\C E
()
V I™

AmenAc s

~

'+ (H - iP)E' - [(M_ +M_62) 4 iPT)E = - M_ e’
(B-2)
pSe3 [1
where H = &= [—Y——z (CL -cD) -(CM +cM_)J

y mi a q d
S e SR
2 Iv | m02 LN Mr\rv I
N LlllN 1% tl\&J

and the other symbols are unchanged.
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The changes of dependent and independent variables yield

£+ (H- iP)E «

The harmonic response solution

Equation (11):

i¢

w
[en]

[1

W

4
[N

The presence of T affects

damping equations (Equations (16-17)) and

WS v avee

constant ¥, the equations for

>

A

the damping

(1+m |E|2+1 PTIE = e*? (B-3)

to Equation (B-3) is quite similar to
- b2 2
(1 - 1,/1)9% + m K]
(B-4)
* A A _1
$(H - 1T/1)]
Xy

the quasilinear analysis through the

one of the harmonic
b

7

(20)). For constant frequencies and

exponents become:10

A

AA . ..1
= - -PT -2m k k sin¥][2¢ - P] (B-5
A [He, a 2 3 ( 1 (B-5)
. _* AN s 2 4,21 4 e w1rA _ p1-1 (R_A)
AZ = - [H¢2 - PT + ma K1 K2 K3 in JL4¢2 ] \ J
The revised version of Equation (20) is
Kk (60 - PT) + m_ k% k sin¥ = - sin ¢__ (B-7)
3 ) a 1 2 30
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= 0 and obtain revised versions of Equations

J

We now require X,

N

[22]

-

- P

where b = - (Hé_ - f’%)/(1'1(15,

4

<

Equations (18-19, 21, B-7--B-9) once again provide a set of seven

- LN
— A3



APPENDIX C

CMANTY TV AT LIADMANTA MATTNN
ODIADILL1II Ur TINARMUNIU MUL LUN
Tha L 114 3 3
The harmonic soclution to Equation (8), given by Equation (11)

can be multivalued. It is shown in Reference 7 that the inter-
mediate size solution is unstable and this solution is, therefore,

ed by a dashed line in Figure 1, The stability argument is

quite simple and will be repeated here for the convenience of th
1

w o

reader. The similar stability argument for Duffing's Equation

is mu

0

h more complicated and involves a detailed discussion of

0]
-~
+
3
~
()
e
©-
w
—
]
1
p—t
—_

vt

Equation (8) then takes on the form

s+ i2-1/1081 0+ [1- (1 -1/1)62 +2m k2 + ilieln
A )’ nN ] [+ 2

(C-2)

if all higher order terms in n and its derivatives are neglected.
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Next we assume an exponential solution for n and separate into

real and imaginary parts

2 . N - _ 12 2
(X + H + [1 (1 Ix/Iy)¢ + 3 ma k3]}n10

(C-4)
- [(2 - Ix/Iy)¢A + H¢]n20 =0

2 -1 b+ Hb
[(2 - L/T)ox + Holn
£ 02 e B+ (1 (- L/T)e2 +m K2Jdn, = 0 (C-5)

The characteristic equation for A can now be obtained by setting the

determinant of the coefficients of njo in Equations (C-4) and (C-5)

to zero, For simplicity we will neglect the ratio of the moments of

inertia in comparison to one,

A"+ arxd+br2+cr+d=0 (C-6)
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where

a =2H
b=2(1+¢2) + 4m k2 + H?
a "3
- on ) 2
c = 2H[1 + ¢ + 2 m k3]

- 12 2 _ 42 2 (242
d=(1 -¢°+ 3 m, ka)(l o< + m_ k3) + H%

The usual analysis can now be employed on the coefficients of this

quartic equation to determine the existence of a positive real part of
A . For small damping, this analysis can be considerably simplified

A2 = - b/2 + /(b/2)2 - d (C-7)

For positive m_, b is always positive and A will have a positive real

part only when
2)(1 - 62 + m_ k?) <0 (C-8)
37" ' a 3

For negative m, the situation is more complicated since b can change

sign. The analysis can, of course, be performed but will not be

£
o



Under our approximation, Equation (11) for the harmonic amplitude

and phase becomes

- 42 27 = -
k3 [1 ¢ + ma k3] + 1 (C-9)

Thus the curve

1 - ¢2 + m, ki =0 (C-10)

is the asymptote of k . As can be seen in Figure C-1, it also can be
3
called the 'backbone' of the harmonic response curve.
If we differentiate Equation (C-9), we have
d

§ _ﬁL.= - 82 2 c-11
k3¢> k3 1 ¢)+3mak3 ( )

(oW

Thus the first term in d vanishes when d¢/dk3 is zero. The curve

1 - 62 + 3 m k2 =0 (C-12)

is also shown in Figure 9, d is negative between these curves and the

intermediate size solution for k3 is, therefore, unstable.
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